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Abstract
As is evident from the multiple values listed in the particle data table for
the mass and width of resonances, such as Z◦,� and ρ, defining these
resonance parameters uniquely and unambiguously remains an open problem.
This problem is ultimately rooted in the absence of a state vector description
of a resonance that has definite properties under spacetime transformations.
We show that there exist irreducible representations of the causal Poincaré
semigroup that provide such a state vector description to resonances, leading
to well-defined mass and width parameters. Generated by an interaction-
incorporating Poincaré algebra and characterized by the complex S-matrix
pole position and spin of the resonance, these representations synthesize the
Bakamjian–Thomas construction of relativistic interactions and the S-matrix
description of resonances.

PACS numbers: 11.30.Cp, 11.55.Bq, 11.80.Et, 02.20.Sv, 03.65.Db

1. Introduction

Currently, there is no consensus on the definitions of the mass and width of relativistic
resonances. This ambiguity is starkly evident from the multiple mass and width values that the
particle data table lists for certain resonances: two sets of values each for ρ and � and three
sets of values for the Z◦-boson [1]. These different values are obtained from fitting the same
lineshape data from the same experiments and the differences are well outside experimental
error. In contrast, mass is one of the fundamental parameters by which a stable elementary
quantum system is defined. The notion has a wonderfully natural meaning as the eigenvalue
of one of the two Casimir operators of an irreducible representation of the Poincaré group
(where the other Casimir operator leads to the notion of spin). If resonances and decaying
states are to be considered autonomous physical entities, as they are generally viewed by
experimentalists and phenomenologists, then it is highly desirable to find a mathematical
structure that allows their mass to emerge from an irreducible representation of a suitable set
of relativistic spacetime transformations. Recall that well-defined values of mass and width
are necessary not only for the purposes of the classification of resonances and decaying states
as elementary particles; for instance, the mass of the Z◦ is a fundamental parameter of the
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standard model. Therefore, unambiguous, unique definitions of mass and width of resonances
are of both theoretical and practical importance.

The conventional approach to relativistic resonances is based on local quantum field
theory, the most popular framework for constructing physical theories that obey the principles
of quantum mechanics and special relativity. The usual treatments based on quantum field
theory do not permit resonances to be viewed as autonomous physical entities but rather as
certain intermediaries [2]. As such, mass and width of resonances are defined not by appealing
to the symmetry transformations of relativistic spacetime as done for stable particles. Instead,
the singularity structures of the propagator are used to define them, as in the on-mass-shell
definitions based on a renormalization point of the propagator.

The main difficulty of these approaches is the arbitrariness of definitions and the ambiguity
of the resulting values. As first pointed out by Stuart [3], the on-mass-shell definitions of mass
and width also suffer from the serious problem gauge non-invariance; for instance, on-shell
mass of the Z◦-boson is gauge-dependent at O(g4) and higher and its width at O(g6) and
higher. The gauge dependence of these parameters can be removed by choosing the S-matrix
pole as the renormalization point, and many of the subsequent attempts at defining the mass
and width of relativistic resonances in fact use the S-matrix definition, see, e.g., [4]. However,
these definitions all still carry a measure of arbitrariness and therewith a certain ambiguity
remains in the mass and width values obtained from the lineshape data for resonances.

The point of view we advocate here is that it is mathematically tenable and physically
desirable to treat quasistable states as autonomous entities along the same lines as stable
particles. More precisely, the mass and width of a resonance should be defined from a
theory that provides resonances with a state vector description that has well-defined properties
under spacetime transformations. We also subscribe to the well-known fact that theories that
synthesize the principles and quantum mechanics and special relativity need not necessarily
assume the existence of quantum fields to mediate interactions. Our goal is to push on as far
as possible with only the principles of quantum theory and special relativity. In this setting,
by a relativistic quantum theory, we mean one in which there exists a unitary representation
of the Poincaré group in the Hilbert space of the theory.

Following an earlier work by Dirac [5], Bakamjian and Thomas [6] constructed the first
class of relativistic quantum theories of a directly interacting two-particle system. The key
idea of the construction, which we will refer to as the BT-construction, is that interactions
can be introduced as a perturbation to the invariant mass operator M = M0 + �M , akin
to the non-relativistic case where the Hamiltonian absorbs the interactions, H = H0 + V .
Interaction incorporating self-adjoint operators that furnish a realization of the Poincaré algebra
can be induced from this interacting mass operator M and the interaction-free generators of
Poincaré transformations. Here, it is possible to choose a kinematic subalgebra that remains
unaffected by the interactions, leading to different forms of dynamics [5]. Sokolov extended the
construction from the two-particle case studied in [6] to an arbitrary number, conserved or not,
in a manner that satisfies the cluster decomposition principle [7]. See [8] for the development
of relevant ideas and [9] for an excellent comprehensive review of the subject and some
interesting original results. In particular, many relativistic quantum systems and phenomena,
such as bound states of quarks and nucleon–nucleon scattering, can be accommodated within
the BT-construction [9]. However, the classification of these systems and phenomena in terms
of whether they admit a BT-construction, a field theoretic construction or both remains an
interesting open problem. In this paper, we will examine how the BT-construction may be
extended to accommodate relativistic resonances and decaying states.

To illustrate the fundamental ideas, we will consider the scattering of two stable particles
leading to the formation of a resonance. The main technical result we report is the existence
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of an irreducible representation of the causal Poincaré semigroup, the semidirect product of
the Lorentz group and the semigroup of spacetime translations into the forward lightcone,
that describes the resonance. This representation is characterized by the position of the
S-matrix resonance pole and the spin-value of the partial wave in which the pole appears.
Thus, a state vector description with well-defined transformation properties under symmetry
operations appears possible for a resonance, and the spacetime translations of these state
vectors constitute a fundamental criterion by which unique mass and width values of the
resonance can be extracted from the pole position.

The causal Poincaré semigroup has a rather long history in connection with resonances
and decaying states [10, 11]. Paper [11] is particularly important as it provides a complete
classification of the representations of the Poincaré semigroup and identifies the ones that are
suitable for describing resonances. These representations are identical to the ones we obtain
here. In this regard, the main new contribution of the present work is that we explicate the
dynamical content of these semigroup representations, i.e., as arising from the integration of
a Poincaré algebra that incorporates interactions and characterized by the complex resonance
pole of the S-matrix. We will primarily work in point-form dynamics for which the velocity
basis with canonical spin is the natural basis. The velocity basis is made use of in [10]. The
same basis is used also in [12] where the representations of the entire Poincaré group are used,
as opposed to the semigroup, to describe resonances. The Poincaré semigroup also appears in
another work [13] on resonances that uses the instant-form dynamics and quantum fields.

The organization of the paper is as follows. In sections 2 and 3, we review the partial
wave analysis and the BT-construction of a two-particle system. In section 4, we construct
the representation of the causal Poincaré semigroup when the two-particle system undergoes
scattering leading to the formation of a resonance. Section 5 contains some concluding
remarks.

2. Partial wave analysis

The Hilbert space of a stable elementary quantum system, often called a particle, furnishes
a unitary, irreducible representation (UIR) of the Poincaré group P [14, 15]. Such a
representation is characterized by the mass and spin of the particle as well as the sign of its
energy, all of which are invariants under the action of the group. In addition to these kinematic
parameters, the particle states may be characterized by invariant charges. Therefore, we denote
the Hilbert space of the system by Hn(m, s), where m, s and n are the mass, spin and charge
of the system, respectively. We always consider representations with positive energies.

The differential dU |(I,0) of a unitary representation U of P furnishes a representation
of the Poincaré Lie algebra by self-adjoint, unbounded operators. A convenient basis of
this operator Lie algebra consists of the generators of spacetime translations Pµ and Lorentz
transformations Jµν . These fulfil the commutation relations

[Pµ, Pν] = 0,

[Pµ, Jρσ ] = i(gµρPσ − gµσPρ), (2.1)

[Jµν, Jρσ ] = i(gνρJµσ − gµρJνσ + gµσJνρ − gνσ Jµρ).

The operators M2 = PµP µ and W = 1
M2 ωµωµ, where ωµ = 1

2εµνρσP νJ ρσ , commute with
the associative algebra generated by Pµ and Jµν . In a UIR, both are proportional to the identity,
M2 = m2I and W = s(s + 1)I .

The representation Hilbert space Hn(m, s) can always be realized as the space of L2-
functions defined on the Cartesian product of the spectra of a complete system of commuting
operators (CSCO). Any four mutually commuting operators Fα from the algebra spanned by
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the generators Pµ and Jµν , along with the mass and spin operators M2 and W can be chosen
as a CSCO, and clearly there are infinitely many such equivalent CSCO. One common choice
for Fα is the spatial momenta P and one component of the (canonical) spin operator S3. The
CSCO {P , S3, [M2,W ]} does not have common eigenvectors that are bona fide elements of
Hn(m, s), but such generalized eigenvectors |p, s3, [m, s]n〉 can be defined as functionals on
a suitable dense subspace of Hn(m, s).

The UIR of the Poincaré group on Hn(m, s) is well defined by the action of the operators
U(�, a) on the generalized eigenvectors |p, s3, [m, s]n〉, given by

U(�, a)|p, s3[m, s]n〉 = e−ia.�p
∑
s ′

3

Ds
s ′

3s3
(W(�,�p))|Λp, s ′

3[m, s]n〉, (2.2)

where Λp is the spatial part of the four vector �p and W(�,p) = L−1(p)�L(�−1p) is a
Wigner rotation.

The Hilbert space of two-particle states is the tensor product

H = Hn1(m1, s1) ⊗ Hn2(m2, s2). (2.3)

The tensor product operators U0(�, a) = U1(�, a) ⊗ U2(�, a), where Ui(�, a) are defined
by (2.2) for the particle of mass mi and spin si, i = 1, 2, furnish a unitary representation of
P in H (2.3). The Poincaré algebra that integrates to this tensor product representation is
spanned by the sum of one-particle operators P (i)

µ and J (i)
µν , i = 1, 2:

P0µ := P (1)
µ ⊗ I (2) + I (1) ⊗ P (2)

µ ,

J0µν := J (1)
µν ⊗ I (2) + I (1) ⊗ J (2)

µν . (2.4)

The subscript 0 in (2.4) and in the representation U0 indicates that there are no interactions
between the two particles. Just as the one-particle operators (2.1), the operators (2.4) fulfil the
commutation relations of the Poincaré algebra:

[P0µ, P0ν] = 0,

[P0µ, J0ρσ ] = i(gµρP0σ − gµσP0ρ), (2.5)

[J0µν, J0ρσ ] = i(gνρJ0µσ − gµρJ0νσ + gµσJ0νρ − gνσ J0µρ).

The central elements are the square mass and spin operators,

M2
0 = P0µP

µ

0 ; W0 = 1

M2
0

ω0µω
µ

0 , (2.6)

where ω0µ = 1
2εµνρσP ν

0 J
ρσ

0 . Unlike generators (2.4), M0 and W0 are not the sums of the
corresponding one-particle operators. The spectrum of the square mass operator M2

0 is [s0,∞),
where s0 = (m1 + m2)

2. The spin spectrum can be either j = 0, 1, 2, . . . if |s1 − s2| is an
integer or j = 1/2, 3/2, 5/2, . . . if |s1 − s2| is a half-odd-integer.

It follows from these spectral values of M2
0 and W that the tensor product representation

U0 = U1 ⊗ U2 in (2.3) generated by the two-particle operators (2.4) is not irreducible.
However, it can be reduced to a continuous direct sum of UIR’s over s and j [16, 17]:

Hn1(m1, s1) ⊗ Hn2(m2, s2) =
∫ ∞

s0

ds
∑
jη

Hη(s, j). (2.7)

Here, η is the degeneracy label that includes orbital angular momentum l, total spin s and
species indices n. Each subspace Hη(s, j) of (2.7) furnishes a UIR of P with mass

√
s and spin

j . Just as done for the one-particle states, this irreducible representation can de defined by the
transformation properties on the eigenvectors for a CSCO. If we choose {P 0, S03, [M0,W0]}
as the CSCO, then generalized eigevectors that transform irreducibly (for each fixed pair of
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values (s, j)) under U0 are |p, j3[s, j ]η〉:
U0(�, a)|p, j3[s, j ]η〉 = e−ia.�p

∑
j ′

3

D
j

j ′
3j3

(W(�,�p))|Λp, j ′
3[s, j ]η〉. (2.8)

It is well known how these can be determined from the |p, s13[m1, s1]〉 ⊗ |p, s23[m2, s2]〉 by
using the Clebsch–Gordan coefficients for the Poincaré group [16, 17].

3. The BT-construction

Let us now turn to the problem of introducing interactions into the above two-particle system
along the lines of BT-construction. To that end, consider a perturbation of the mass operator
(2.6) of the form

M := M0 + �M. (3.1)

The central idea is to construct a set of ten operators Pµ and Jµν such that the commutation
relations (2.5) are fulfilled and the defining relation M = PµP µ holds for M defined by
(3.1). The BT-construction shows [6, 9] how the interacting generators Pµ and Jµν can be
constructed from the free generators (2.4) and the interacting mass operator (3.1).

The first step of the construction is choosing a CSCO
{
Fα,

[
M2

0 ,W0
]}

for the two-particle
states such that the operators Fα , which are functions of the free operators (2.4), all commute
with the perturbation to the mass operator �M . The perturbation �M is also required to
commute with the spin operator W0. Thus,

[M,Fα] = 0 and [M,W0] = 0. (3.2)

Therefore, the set of operators {Fα, [M2,W0]} is a CSCO for the interacting system. Now, we
may invert the expressions Fα to obtain the interaction-free two-particle generators Pµ0 and
Jµν0. If the free mass operator (or functions thereof) appears in these inverted expressions, then
we may replace it with the interaction-incorporating mass operator M to obtain the interacting
generators. By virtue of (3.2), these fulfil the characteristic commutation relations (2.1) of the
Poincaré algebra.

As a concrete example how this general construction goes, let us choose for the
mutually commuting functions Fα the spatial components of the velocity operators defined
by Q0µ = P0µ

M0
and the third component of the canonical spin operator S03, i.e., the CSCO is{

Q0, S03,
[
M2

0 ,W0
]}

. Thus, as in (3.2), the interaction term �M must satisfy the commutation
relations

[�M,Q0] = 0, [�M,S03] = 0. (3.3)

Interacting operators can be defined by

P = MQ0, H = MH0 = M(I + Q2)1/2, Jµν = J0µν. (3.4)

From (2.5) and (3.3), the operators Pµ and Jµν defined by (3.4) fulfil the commutation
relations of the Poincaré algebra, and in this sense, the interacting system preserves relativistic
invariance. By construction, momentum operators are affected by interactions, while the
Lorentz group generators are not. This choice amounts to what Dirac called the point-form
dynamics [5]. It is evident from the defining equations (3.4) that the interaction term �M

is invariant under Lorentz transformations. On the other hand, while it commutes with the
velocity operators Qµ = 1

M
Pµ = Q0µ, the interaction �M is not necessarily invariant under

translations. These requirements imply that �M must be a function of only the internal
variables, such as the magnitude of the relative momentum k and the degeneracy labels η

(including l and s).
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It follows from (3.4) that the spin operator W = 1
M2 ωµωµ, where ωµ = 1

2εµνρσP νJ ρσ ,
is identical to the free operator W0 of (2.6). Therewith, we obtain a CSCO for the interacting
system: {Q, S3, [M2,W ]}. From these considerations we see that the essential strength of
the BT-construction is that it provides a way of inducing perturbations into all the generators
of the ten-parameter group P from a perturbation to the single mass operator M0. Therefore,
it allows us to obtain a perturbation theory for the Poincaré group from the well-established
perturbation theory for the one-dimensional Lie group R.

Under the usual integrability conditions for operator Lie algebras [18], the interacting Lie
algebra generated by (3.4) integrates to a unitary representation of P in (2.3). We denote this
unitary representation by U, as opposed to U0, the one generated by the free operators (2.4).

4. Resonance scattering and decay

Instead of directly integrating the interacting Poincaré algebra to obtain the unitary
representation U of the Poincaré group, it is often more instructive to solve the eigenvalue
problem for a CSCO and obtain a basis of generalized eigenvectors. This is a particularly
relevant avenue to pursue when the interacting system undergoes resonance scattering. Thus, in
anticipation of scattering, we will assume that �M is such that the spectrum of M is absolutely
continuous and coincides with that of M0. These assumptions are not very restrictive and
generally made in non-relativistic scattering theory. Further, it is known from the non-
relativistic theory that if the interaction H − H0 satisfies certain regularity properties, then
Møller operators exist and are asymptotically complete [19]. If the same properties are
required of �M , then Møller operators exist and asymptotic completeness holds:


±(M,M0) = lim
τ→∓∞ eiMτ e−iM0τ . (4.1)

For notational economy, we will suppress the explicit reference to the mass operators and
denote Møller operators simply by 
±. It is evident from (4.1) that 
± satisfy the intertwining
relations M
± = 
±M0 which, in turn, along with (3.4), imply

Pµ
± = 
±P0µ,

Jµν
± = J0µν
± = 
±J0µν. (4.2)

By asymptotic completeness, the operators 
± map the Hilbert space (2.3) unitarily onto itself
such that, for ϕ ∈ H,
+ϕ := φ+ are the scattering in-vectors and 
−ϕ := ψ− are the out-
vectors. When defined as elements of suitably defined dense subspaces, the in- and out-vectors
φ+ and ψ−, respectively, may be expanded in terms of bases of generalized eigenvectors of a
CSCO. While all CSCO are equivalent, for an interaction defining the point-form dynamics
(3.4) the choice {Q, S3, [M2,W ]} is most convenient. As will be shown below, this choice is
particularly suitable for accommodating the analyticity properties of the mass wavefunctions
suggested by the analytic structure of the S-matrix.

Generalized eigenvectors |q, j3[s, j ]η〉 for the CSCO {Q, S3, [M2,W ]} must be defined
as elements of a space of functionals �× on a suitable dense subspace (of test functions) �

of the Hilbert space H. Such a space �× will contain the Hilbert space as a dense subspace.
Therefore, we may extend the unitary operators 
± from H to operators 
×

± in �×. These
extended operators 
×

± map the generalized eigenvectors |q, j3[s, j ]η〉 into interacting in-
and out-generalized eigenvectors: |q, j3[s, j ]η±〉 = 
×

±|q, j3[s, j ]η〉. Like |q, j3[s, j ]η〉,
the |q, j3[s, j ]η±〉 must be properly defined as continuous antilinear functionals on suitable
subspaces of the Hilbert space (2.3). We will shortly see that the analyticity properties of
the S-matrix provide the clues as to how the relevant subspaces of H are to be constructed.
This is in fact the point of departure of the formalism we develop from standard treatments of
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scattering and decay. A discussion of the lines of demarcation between the standard treatments
and the rigged Hilbert space theory of resonance scattering can be found, for instance, in [20].
While this discussion is for the non-relativistic case, it easily translates into the relativistic
case. When so defined as functionals, the vectors |q, j3[s, j ]η+〉 and |q, j3[s, j ]η−〉 furnish a
basis for the in-vectors φ+ and out-vectors ψ−, respectively:

φ+ =
∑
jj3η

∫ ∞

s0

ds

∫
dq

2q0
|q, j3[s, j ]η+〉〈+q, j3[s, j ]η|φ+〉,

ψ− =
∑
jj3η

∫ ∞

s0

ds

∫
dq

2q0
|q, j3[s, j ]η−〉〈−q, j3[s, j ]η|ψ−〉.

(4.3)

The vectors |q, j3[s, j ]η±〉 have the normalization 〈q′, j ′
3[s′, j ′]η′±|q, j3[s, j ]η±〉 =

2q0δ(s′ − s)δ(q′ − q)δj ′
3j3δj ′j δη′η. Thus, with (4.3), the S-matrix element 〈ϕ|Sϕ〉 = 〈φ+|ψ−〉

has the expansion

〈ψ−|φ+〉 =
∑
jj3η

∫ ∞

s0

ds

∫
dq

2q0
〈ψ−|q, j3[s, j ]η−〉Sη

j (s)〈q, j3[s, j ]η+|φ+〉, (4.4)

where the reduced S-matrix S
η

j (s) is defined (for elastic scattering) by

〈q′, j ′
3[s′, j ′]η′−|q, j3[s, j ]η+〉 = δ(q′ − q)δ(s′ − s)δj ′j δj ′

3j3δη′ηS
η

j (s). (4.5)

Aside from certain singularities, S
η

j (s) is an analytic function defined on a multi-sheeted
Riemann complex s-plane [21]. Resonances correspond to singularities of this function—in
particular, a resonance is associated with a pair of simple poles of one partial wave of S

η

j (s)
defined by a particular pair of values (j, η). If the angular momentum value of the resonating
partial wave is jR , then jR will be the spin value of the resonance. Since our focus here is
such a resonance, we will only consider the value j = jR and suppress the summation over
j and η in expansion (4.4). The pair of resonance poles of SjR

(s) occur at positions that are
complex conjugates of each other, say s = sR and s = s∗

R in the second Riemann sheet [21].
For the sake of definiteness, let us take sR to be on the lower half plane, i.e., Im(sR) < 0.

In order to bring forth the contribution of the resonance to 〈φ+|ψ−〉, we must
consider the extension of the integral over s in (4.4) into one defined over a contour
that encircles the pole position s = sR . This in turn requires that the integrand
〈ψ−|q, jR3[s, jR]−〉SjR

(s)〈q, jR3[s, jR]+|φ+〉 has an analytic extension in s. Since SjR
(s)

is already an analytic function, we only need to demand that the wavefunctions
〈ψ−|q, jR3[s, jR]−〉 and 〈q, jR3[s, jR]+|φ+〉 have analytic extensions into the lower half
complex s-plane, i.e., we must introduce boundary conditions into the wavefunctions in
addition to the usual square integrability. For formation processes, the velocity wavefunctions
〈ψ−|q, jR3[s, jR]−〉 and 〈q, jR3[s, jR]+|φ+〉 have the advantage that they can be analytically
extended in s while keeping the velocity variables real. This leads to complex momenta of the
form

√
sqµ, where qµ are real.

Recall that the Hilbert space for the unitary representation of the Poincaré group generated
by interaction-incorporating operators (3.4) can always be realized as the space of L2-functions
defined on the Cartesian product of the spectra of any CSCO from the enveloping algebra
of (3.4). For the CSCO {Q, S3, [M2,W ]} and W = jR(jR + 1)I , the L2-realization of
Hj=jR

= ∫ ∞
s0

dsH(s, jR) is L2
(
Rs0 , R

3) ⊗ C
(2jR+1). Out of these L2-functions, we must

choose for 〈ψ−|q, jR3[s, jR]−〉 and 〈q, jR3[s, jR]+|φ+〉 those which admit analytic extensions
into the lower half complex plane. Further, for the contour deformation of the integral over s
in (4.4) to be defined, these analytic extensions must decrease sufficiently fast for |s| → ∞.
These requirements can be fulfilled if we choose 〈ψ−|q, jR3[s, jR]−〉 and 〈q, jR3[s, jR]+|φ+〉
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to be of Hardy class [22] from below (i.e., boundary values of analytic functions on the open
lower half complex plane) in the square mass variable s. Specifically, let

{〈q, jR3[s, jR]−|ψ−〉} ≡ K+ := M ∩ H2
+

∣∣
Rs0

⊗ S(R3) ⊗ C
(2jR+1), (4.6a)

{〈q, jR3[s, jR]+|φ+〉} ≡ K− := M ∩ H2
−
∣∣
Rs0

⊗ S(R3) ⊗ C
(2jR+1). (4.6b)

Here, S(R3) is the Schwartz space over R
3,H2

± are Hardy class functions on C
± and M is

the subspace of Schwartz functions S(R) which, along with all of their derivatives, vanish at
the origin. The symbol |Rs0

indicates the restrictions of the functions in M∩H2
±, the support

of which is the whole real line, to the spectrum of M2, Rs0 . Since 〈q, jR3[s, jR]−|ψ−〉 ∈ H2
+

implies 〈q, jR3[s, jR]−|ψ−〉 ∈ H2
−, 〈ψ−|q, jR3[s, jR]−〉 and therewith the integrand of (4.4)

have the required analyticity properties on the lower half s-plane.
It is important to point out that requirements (4.6) do not impose additional restrictions

on the interaction term �M . If, as required, M = M0 + �M has an absolutely continuous
spectrum bounded from below, then there exists a Hilbert space L2(Rs0 , R

3) ⊗ C
(2jR+1) in

which M acts as a multiplication operator. Hardy function spaces K± defined by (4.6) are
dense subspaces of this Hilbert space. Furthermore, these spaces reduce the mass operator
M and they can be equipped with a nuclear Frechét topology. Thus, denoting the topological
duals of K± by K×

±, we have a pair of rigged Hilbert spaces [23]:

K± ⊂ L2
(
Rs0 , R

3) ⊗ C
(2jR+1) ⊂ K×

±. (4.7)

Definitions (4.6) imply that in- and out-vectors φ+ and ψ−, respectively, must belong to suitable
dense subspaces of the Hilbert space H so that generalized eigenvectors |q, jR3[s, jR]±〉 acting
on these spaces as functionals yield the function spaces K±. Therefore, if we denote by �± the
set of vectors in H which have the L2-realizations (4.6±), i.e., �+ = {ψ−} and �− = {φ+},
then we have |q, jR3[s, jR]±〉 ∈ �×

∓ and therewith the pair of abstract-rigged Hilbert spaces1:

�± ⊂ H ⊂ �×
±. (4.8)

With φ+ and ψ− well defined as the elements of �∓ and |q, jR3[s, jR]±〉 as the elements of
�×

∓, the Dirac basis vector expansions (4.3) hold (without the sum over j and η) as rigorous
mathematical identities (nuclear spectral theorem [24]).

Hardy functions are boundary values of functions analytic in the open (upper or lower)
half complex plane. In other words, while the functions identified in spaces (4.6±) have real
domains—as they should if they are subspaces of the Hilbert space L2(Rs0 , R

3) ⊗ C
(2jR+1)—

they have unique analytic extensions into the upper and lower complex s half-plane. Therefore,
the choices (4.6∓) as the spaces for in- and out-wavefunctions permit the deformation of
integral (4.4) into a contour integral on the lower half complex s-plane. Since Hardy class
functions vanish at infinity and since the integrand is analytic on the lower half s-plane except
for the resonance pole at sR , the integral of (4.4) over the square mass variable s can be written
as the sum of an integral over (−∞, s0] and an integral over a contour that encircles sR . This
latter integral can be easily evaluated by the Cauchy theorem and Laurent expansion of SjR

(s)
around s = sR . Thus, we obtain

〈ψ−|φ+〉 = c
∑
jR3

∫
dq

2q0
〈ψ−|q, jR3[sR, jR]−〉〈q, jR3[sR, jR]+|φ+〉

+
∑
jR3

∫ s0

−∞
ds

∫
dq

2q0
〈ψ−|q, jR3[s, jR]−〉SjR

(s)〈q, jR3[s, jR]+|φ+〉, (4.9)

1 The discrepancy between the ± for vector spaces and elements thereof is due to the way in- and out-states have
been traditionally defined in physics and Hardy spaces from above and below have been defined in mathematics.
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where c is a constant determined by the residue of the Laurent expansion. The
vectors |q, jR3[sR, jR]−〉 that appear in (4.9) are generalized eigenvectors of the CSCO
{Q, S3[M2,W ]} and they are well defined as elements of the dual space �×

+ . Since the
momenta are defined as Pµ = MQµ, the vectors |q, jR3[sR, jR]−〉 are also generalized
eigenvectors of the momenta. Therefore,

M|q, jR3[sR, jR]−〉 = √
sR|q, jR3[sR, jR]−〉,

Pµ|q, jR3[sR, jR]−〉 = √
sRqµ|q, jR3[sR, jR]−〉,

S3|q, jR3[sR, jR]−〉 = jR3|q, jR3[sR, jR]−〉,
W |q, jR3[sR, jR]−〉 = jR(jR + 1)|q, jR3[sR, jR]−〉.

(4.10)

These equalities show that the |q, jR3[sR, jR]−〉 serve as a basis for a vector space in which
the mass and spin operators are proportional to the identity, M = √

sRI and W = jR(jR +1)I ,
albeit the mass eigenvalue is now complex. Since parameters sR and jR (along with non-
kinematic charges) are precisely the ones which define a resonance, the vector space spanned
by |q, jR3[sR, jR]−〉 furnishes a state vector description of the resonance.

As mentioned above, the Poincaré algebra spanned by the interaction-incorporating
operators (3.4) integrates in the Hilbert space

∫ ∞
s0

dsH(s, jR) to a unitary representation
of the Poincaré group. We denoted this representation by U, as opposed to the interaction-free
representation U0. In the L2-realization of the Hilbert space, L2(Rs0 , R

3) ⊗ C
(2jR+1), the

operators U(�, a) can be defined to have the action

(U(�, a)f )(s, q, jR3) = e−i
√

sq.a
∑
j ′
R3

D
jR

jR3j
′
R3

(W(�, q))f (s,Λ−1q, j ′
R3). (4.11)

If q is real, it follows from (4.11) and the defining properties of Hardy class functions that the
subspace K+ of L2(Rs0 , R

3) ⊗ C
(2jR+1) remains invariant under U(�, a) if and only if a0 � 0

and a2 � 0, i.e., if and only if a is a translation into the forward light cone. The set of elements

P+ := {(�, a) : (�, a) ∈ P; a2 � 0, a0 � 0} (4.12)

is a semigroup under the product rule of P . We call P+ the causal Poincaré semigroup.
Since �+ is isomorphic to (4.6a), we conclude that the restriction of the unitary

representation U in H to �+ furnishes a representation U+ of the semigroup P+. This
representation of P+ is differentiable in �+ with respect to its nuclear Fréchet topology.
By duality, then there exist a representation of P+ in �×

+ , differentiable with respect to its
weak-* topology. The dual representation of a group is generally defined by the duality
formula 〈U×(g−1)F +|φ+〉 = 〈F +|U(g)φ+〉. However, for the Poincaré semigroup, we define
it in the rigged Hilbert space (4.8)+) by

〈
U×

+ (�−1,�−1a)F−|ψ−〉 = 〈F−|U+(�, a)ψ−〉. Note
that, unlike (�, a)−1 = (�−1,−�−1a), (�−1,�−1a) ∈ P+ when (�, a) ∈ P+. This property
and the Abelian character of the translation semigroup ensures that U×

+ defined this way
is a representation of P+ when U+ is one. Then, generalized eigenvectors |q, jR3[s, jR]−〉
transform as

U×
+ (�, a)|q, jR3[s, jR]−〉 = e−i

√
sa.�q

∑
j ′
R3

D
jR

j ′
R3jR3

(W(�,�q))|Λq, j ′
R3[s, jR]−〉. (4.13)

Similarly, there exists a representation of P+ in �− which is defined by the transformation
rule of the basis vectors |q, jR3[s, jR]+〉. For (�, a) ∈ P+,

U×
− (�, a)|q, jR3[s, jR]+〉 = ei

√
sa.�q

∑
j ′
R3

D
jR

j ′
R3jR3

(W(�,�q))|Λq, j ′
R3[s, jR]+〉. (4.14)
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As elements of �×
+ , resonance basis vectors also transform as (4.13):

U×
+ (�, a)|q, jR3[sR, jR]−〉 = e−i

√
sRa.�q

∑
j ′
R3

D
jR

j ′
R3jR3

(W(�,�q))|Λq, j ′
R3[sR, jR]−〉. (4.15)

The transformation formula (4.15) defines an irreducible representation of the causal
Poincaré semigroup in the space of vectors spanned by the resonance basis vectors,∑

jR3

∫ dq
2q0 |q, jR3[sR, jR]−〉ϕ(q, jR3). In this vector space, the mass and spin operators act as

in (4.10), M = √
sRI and W = jR(jR + 1)I . Therefore, in the same vein as stable elementary

quantum systems have representation as the UIR’s of P , resonance states have representation
as the irreducible representations of P+ characterized by the complex square mass value sR

and half-odd-integer spin value jR .
Furthermore, the transformation properties of |q, jR3[sR, jR]−〉 under P+ provide a

unique, unambiguous criterion for extracting the resonance mass and width values from
the pole position, the question that motivated this study. To that end, let us consider the time
evolution of the rest state. It follows from the general transformation formula (4.15):

U×
+ (I, t)|0, jR3[sR, jR]−〉 = e−i

√
sRt |0, jR3[sR, jR]−〉. (4.16)

This shows that the amplitudes |〈ψ−(t)|0, jR3[sR, jR]−〉|2 decay as e−�t , where �
2 = Im(

√
sR),

the half-width of the Lorentzian mass distribution characterized by the pole position sR .
Therefore, the representations of P+ synthesize the resonance and decaying state aspects
quasistable states and establishes the relation τ = 1

�
between the lifetime of a decaying state

and the width of a resonance as an exact identity. Since only the definition � = 2 Im(
√

sR) of
width fulfils this identity, we have a unique definition of the resonance width as � = 2 Im(

√
sR)

and therewith the resonance mass as m = Re(
√

sR) such that sR = (m − i�/2)2. When the
lineshape data for the Z0-boson are fitted using these definitions, the resulting mass and width
values are different from those obtained by the on-mass-shell scheme and other techniques
[25, 4].

5. Conclusion

We have shown that the BT-construction [6, 9] can be extended to describe resonance states
formed in two-particle scattering. The key elements of the construction are the inclusion of
interactions in the mass operator (3.1) and the use of the velocity basis and Hardy class
functions (4.6). From these considerations, we deduce that there exists an irreducible
representation of the causal Poincaré semigroup uniquely characterized by the resonance
pole position sR and the spin value jR of the resonating partial S-matrix, SjR

(s). These
representations tie together resonances and decaying states into a single physical entity leading
to unique, unambiguous definitions of resonance mass and width.

The particular details of a given resonance scattering process can be, in principle, encoded
in the mass perturbation term �M as a function of the internal degeneracy labels. The
formalism presented here is independent of such model mass operators and instead uses the
description of a resonance as a pole of the S-matrix. As such, it can accommodate all model
mass operators that give rise to the same pole structure of the S-matrix.
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